Abstract-Reflection photoplethysmography (PPG) using 530 nm (green) wavelength light has the potential to be a superior method for monitoring heart rate (HR) during normal daily life due to its relative freedom from artifacts. However, little is known about the accuracy of pulse rate (PR) measured by 530 nm light PPG during motion. Therefore, we compared the HR measured by electrocadiography (ECG) as a reference with PR measured by 530, 645 (red), and 470 nm (blue) wavelength light PPG during baseline and while performing hand waving in 12 participants. In addition, we examined the change of signal-to-noise ratio (SNR) by motion for each of the three wavelengths used for the PPG. The results showed that the limit of agreement in Bland-Altman plots between the HR measured by ECG and PR measured by 530 nm light PPG (±0.61 bpm) was smaller than that achieved when using 645 and 470 nm light PPG (±3.20 bpm and ±2.23 bpm, respectively). The ΔSNR (the difference between baseline and task values) of 530 and 470nm light PPG was significantly smaller than ΔSNR for red light PPG. In conclusion, 530 nm light PPG could be a more suitable method than 645 and 470nm light PPG for monitoring HR in normal daily life.
I. INTRODUCTIONPhotoplethysmography (PPG) is a popular optical technology for the monitoring heart rate (HR) in normal daily life due to its simplicity and convenience, in its simplest form only requiring the attachment of a light emitting diode (LED) and a photodetector (PD) [1,2]. However, the reliability of PPG signals measured during normal daily life can be reduced by motion artifacts [3,4]. Thus, various techniques for the Jihyoung Lee is with Graduate