The tetrathiafulvalene-amido-2-pyridine-N-oxide (L) ligand has been employed to coordinate 4f elements. The architecture of the complexes mainly depends on the ionic radii of the lanthanides. Thus, the reaction of L in the same experimental protocol leads to three different molecular structure series. Binuclear [Ln(2)(hfac)(5)(O(2)CPhCl)(L)(3)]·2 H(2)O (hfac(-)=1,1,1,5,5,5-hexafluoroacetylacetonate anion, O(2)CPhCl(-)=3-chlorobenzoate anion) and mononuclear [Ln(hfac)(3)(L)(2)] complexes were obtained by using rare-earth ions with either large (Ln(III)=Pr, Gd) or small (Ln(III)=Y, Yb) ionic radius, respectively, whereas the use of Tb(III) that possesses an intermediate ionic radius led to the formation of a binuclear complex of formula [Tb(2)(hfac)(4)(O(2)CPhCl)(2)(L)(2)]. Antiferromagnetic interactions have been observed in the three dinuclear compounds by using an extended empirical method. Photophysical properties of the coordination complexes have been studied by solid-state absorption spectroscopy, whereas time-dependent density functional theory (TD-DFT) calculations have been carried out on the diamagnetic Y(III) derivative to build a molecular orbital diagram and to reproduce the absorption spectrum. For the [Yb(hfac)(3)(L)(2)] complex, the excitation at 19,600 cm(-1) of the HOMO→LUMO+1/LUMO+2 charge-transfer transition induces both line-shape emissions in the near-IR spectral range assigned to the (2)F(5/2)→(2)F(7/2) (9860 cm(-1)) ytterbium-centered transition and a residual charge-transfer emission around 13,150 cm(-1). An efficient antenna effect that proceeds through energy transfer from the singlet excited state of the tetrathiafulvalene-amido-2-pyridine-N-oxide chromophore is evidence of the Yb(III) sensitization.