Both canonical and alternative splicing of RNAs are governed by intronic sequence elements and produce transient lariat structures fastened by branch points within introns. To map precisely the location of branch points on a genomic scale, we developed LaSSO (Lariat Sequence Site Origin), a data-driven algorithm which utilizes RNA-seq data. Using fission yeast cells lacking the debranching enzyme Dbr1, LaSSO not only accurately identified canonical splicing events, but also pinpointed novel, but rare, exon-skipping events, which may reflect aberrantly spliced transcripts. Compromised intron turnover perturbed gene regulation at multiple levels, including splicing and protein translation. Notably, Dbr1 function was also critical for the expression of mitochondrial genes and for the processing of self-spliced mitochondrial introns. LaSSO showed better sensitivity and accuracy than algorithms used for computational branch-point prediction or for empirical branch-point determination. Even when applied to a human data set acquired in the presence of debranching activity, LaSSO identified both canonical and exon-skipping branch points. LaSSO thus provides an effective approach for defining high-resolution maps of branch-site sequences and intronic elements on a genomic scale. LaSSO should be useful to validate introns and uncover branch-point sequences in any eukaryote, and it could be integrated into RNA-seq pipelines.
[Supplemental material is available for this article.]Introns and exons refer to noncoding and coding sequences, respectively, that constitute protein-coding genes (Gilbert 1978). To create a functional messenger RNA (mRNA), introns are excised via a highly conserved and accurate process called splicing that culminates in concatenation of exon sequences into translatable transcripts. Splicing entails two transesterification reactions catalyzed by the spliceosome, a large RNA-protein complex (Wahl et al. 2009). The first reaction involves a nucleophilic attack of an adenosine (branch point) on the 59-splice donor, resulting in a lariat structure fixed by a 29-59 phosphodiester bond; the intron remains only attached to the downstream exon (Fig. 1A,B ;Padgett et al. 1985). The second reaction involves an attack of the detached upstream exon on the 39-splice acceptor, resulting in intron lariat release and exon ligation (Fig. 1C). The intron is then processed by exonucleolytic cleavage of the 39-lariat tail and linearization by the debranching enzyme Dbr1 (Fig.