In practice of acoustic tomography, for example, in medical applications and ocean tomography, the relative deviation of sound speed from its background value usually does not exceed 10-30%. At the same time, in electromagnetic applications, the equivalent contrasts can be noticeably higher than 60%. Since the inverse electromagnetic problem can be reduced in some approximation to Helmholtz equation, a formal comparison of reconstruction results obtained for different "acoustic" contrast and corresponding "dielectric" contrast is possible. In this work examples of such reconstructions are presented, which were obtained by using the functional-analytical algorithm described in works of R.G. Novikov. Previously, the advantages of this algorithm for solving practical problems of acoustic tomography were demonstrated. Results obtained in the present work show that functional-analytical algorithm can also be applied to reconstructing inhomogeneities with high "dielectric" contrast. Moreover, the functional algorithm also perfectly reconstructs very small "dielectric" contrast, recovering of which can be difficult for other approaches due to weak backscattering.