The possible muscular strength, hypertrophy, and muscle power benefits of resistance training under environmental conditions of hypoxia are currently being investigated.Nowadays, resistance training in hypoxia constitutes a promising new training strategy for strength and muscle gains. The main mechanisms responsible for these effects seem to be related to increased metabolite accumulation due to hypoxia. However, no data are reported in the literature to describe and compare the efficacy of the different hypertrophic resistance training strategies in hypoxia.Moreover, improvements in sprinting, jumping, or throwing performance have also been described at terrestrial altitude, encouraging research into the speed of explosive movements at altitude. It has been suggested that the reduction in the aerodynamic resistance and/or the increase in the anaerobic metabolism at higher altitudes can influence the metabolic cost, increase the take-off velocities, or improve the motor unit recruitment patterns, which may explain these improvements. Despite these findings, the applicability of altitude conditions in improving muscle power by resistance training remains to be clarified.This review examines current knowledge regarding resistance training in different types of hypoxia, focusing on strategies designed to improve muscle hypertrophy as well as power for explosive movements.