Background
To assess the corneal stress-strain index (SSI), which is a marker for material stiffness and corneal biomechanical parameters, in myopic eyes.
Methods
A total of 1054 myopic patients were included in this study. Corneal visualisation Scheimpflug technology was used to measure the SSI. Corneal biomechanics were assessed using the first and second applanation times (A1-and A2-times); maximum deflection amplitude (DefAmax); deflection area (HCDefArea); the highest concavity peak distance (HC-PD), time (HC-time), and deflection amplitude (HC-DefA); integrated radius (IR); whole eye movement (WEM); stiffness parameter (SP-A1;, biomechanically corrected intraocular pressure (BIOP); and Corvis biomechanical index (CBI). Scheimpflug tomography was used to obtain the mean keratometery (Km) and central corneal thickness (CCT). According to the spherical equivalent (SE) (low myopia: SE ≥ − 3.00D and high myopia: SE ≤ − 6.00D.), the suitable patients were divided into two groups.
Results
The mean SSI value was 0.854 ± 0.004. The SSI had a positive correlation with A1-time ((r = 0.272), HC-time (r = 0.218), WEM (r = 0.288), SP-A1 (r = 0.316), CBI (r = 0.199), CCT (r = 0.125), bIOP (r = 0.230), and SE (r = 0.313) (all p-values<0.01). The SSI had a negative correlation with HCDefA (r = − 0.721), HCDefArea (r = − 0.665), HC-PD(r = − 0.597), IR (r = − 0.555), DefAmax (r = − 0.564), and Km (r = − 0.103) (all p-values<0.01). There were significant differences in SSI (t = 8.960, p<0.01) and IR (t = − 3.509, p<0.01) between the low and high myopia groups.
Conclusions
In different grades of myopia, the SSI values were lower in eyes with higher SEs. It indicates that the mechanical strength of the cornea may be compromised in high myopia. The SSI was positively correlated with the spherical equivalent, and it may provide a new way to study the mechanism of myopia.