Land‐use change has resulted in rangeland loss and degradation globally. These changes include conversion of native grasslands for row‐crop agriculture as well as degradation of remaining rangeland due to fragmentation and changing disturbance regimes. Understanding how these and other factors influence wildlife use of rangelands is important for conservation and management of wildlife populations. We investigated bat habitat associations in a working rangeland in southeastern North Dakota. We used Petterson d500x acoustic detectors to systematically sample bat activity across the study area on a 1‐km point grid. We identified calls using Sonobat autoclassification software. We detected five species using this working rangeland, which included Lasionycteris noctivagans (2,722 detections), Lasiurus cinereus (2,055 detections), Eptesicus fuscus (749 detections), Lasiurus
borealis (62 detections), and Myotis lucifugus (1 detection). We developed generalized linear mixed‐effects models for the four most frequently detected species based on their ecology. The activity of three bat species increased with higher tree cover. While the scale of selection varied between the four species, all three investigated scales were explanatory for at least one bat species. The broad importance of trees to bats in rangelands may put their conservation needs at odds with those of obligate grassland species. Focusing rangeland bat conservation on areas that were treed prior to European settlement, such as riparian forests, can provide important areas for bat conservation while minimizing negative impacts on grassland species.