Classical risk factors only partially account for variations in cardiovascular disease incidence; therefore, also other so far unknown features, among which meteorological factors, may influence heart diseases (mainly coronary heart diseases, but also heart failure, arrhythmias, aortic dissection and stroke) rates. The most studied phenomenon is ambient temperature. The relation between mortality, as well as cardiovascular diseases incidence, and temperature appears graphically as a ‘‘U’’ shape. Exposure to cold, heat and heat waves is associated with an increased risk of acute coronary syndromes. Other climatic variables, such as humidity, atmospheric pressure, sunlight hours, wind strength and direction and rain/snow precipitations have been hypothesized as related to fatal and non-fatal cardiovascular diseases incidence. Main limitation of these studies is the unavailability of data on individual exposure to weather parameters. Effects of weather may vary depending on other factors, such as population disease profile and age structure. Climatic stress may increase direct and indirect risks to human health
via
different, complex pathophysiological pathways and exogenous and endogenous mechanisms. These data have attracted growing interest because of the recent earth’s climate change, with consequent increasing ambient temperatures and climatic fluctuations. This review evaluates the evidence base for cardiac health consequences of climate conditions, and it also explores potential further implications.