Chronic hepatitis B is a numerically important cause of cirrhosis and hepatocellular carcinoma. Nucleoside analogue therapy may modify the risk. However, maintenance suppressive therapy is required, as a functional cure (generally defined as loss of HBsAg off treatment) is an uncommon outcome of antiviral treatment. Chronic hepatitis B is a numerically important cause of cirrhosis and hepatocellular carcinoma. Nucleoside analogue therapy may modify the risk. However, maintenance suppressive therapy is required, as a functional cure (generally defined as loss of HBsAg off treatment) is an uncommon outcome of antiviral treatment. Currently numerous investigational agents being developed to either interfere with specific steps in HBV replication or as host cellular targeting agents, that inhibit viral replication, and deplete or inactivate cccDNA, or as immune modulators. Synergistic mechanisms will be needed to incorporate a decrease in HBV transcription, impairment of transcription from HBV genomes, loss of cccDNA or altered epigenetic regulation of cccDNA transcription, and immune modulation or immunologically stimulated hepatocyte cell turnover. Nucleoside analogue suppressed patients are being included in many current trials. Trials are progressing to combination therapy as additive or synergistic effects are sought. These trials will provide important insights into the biology of HBV and perturbations of the immune response, required to effect HBsAg loss at different stages of the disease. The prospect of cures of hepatitis B would ensure that a wide range of patients could be deemed candidates for treatment with new compounds if these were highly effective, finite and safe. Withdrawal of therapy in short‐term trials is challenging because short‐term therapies may risk severe hepatitis flares, and hepatic decompensation. The limited clinical trial data to date suggest that combination therapy is inevitable.