We consider a general Euler-Korteweg-Poisson system in R 3 , supplemented with the space periodic boundary conditions, where the quantum hydrodynamics equations and the classical fluid dynamics equations with capillarity are recovered as particular examples. We show that the system admits infinitely many global-in-time weak solutions for any sufficiently smooth initial data including the case of a vanishing initial density -the vacuum zones. Moreover, there is a vast family of initial data, for which the Cauchy problem possesses infinitely many dissipative weak solutions, i.e. the weak solutions satisfying the energy inequality. Finally, we establish the weak-strong uniqueness property in a class of solutions without vacuum.