Coupling of the radical sites in isomeric benzynes is known to hinder their radical reactivity. In order to determine how far apart the radical sites must be for them not to interact, the gasphase reactivity of several isomeric protonated (iso)quinoline-and acridine-based biradicals was examined. All the (iso)quinoliniumbased biradicals were found to react slower than the related monoradicals with similar vertical electron affinities (i.e., similar polar effects). In sharp contrast, the acridinium-based biradicals, most with the radical sites farther apart than in the (iso)quinolinium-based systems, showed greater reactivities than the relevant monoradicals with similar vertical electron affinities. The greater distances between the two radical sites in these biradicals lead to very little or no spin−spin coupling, and no suppression of radical reactivity was observed. Therefore, the radical sites can still interact if they are located on adjacent benzene rings and only after being separated further than that does no coupling occur. The most reactive radical site of each biradical was experimentally determined to be the one predicted to be more reactive based on the monoradical reactivity data. Therefore, the calculated vertical electron affinities of relevant monoradicals can be used to predict which radical site is most reactive in the biradicals.