Reconstructions of Holocene relative sea-level and groundwater-level rise are crucial for understanding the palaeogeographical and geological evolution of coastal plains, while also serving studies of differential land-level change, palaeoecology, and archaeology. At present, the quest for higher accuracy in sea-level reconstruction and for better understanding of differences between local groundwater-level curves is still ongoing.Studies of Holocene relative (ground)water change and sealevel change in the Netherlands are based primarily on radiocarbon-dated samples from the base of peats which accumulated on pre-Holocene substrates (e.g., Jelgersma, 1961Jelgersma, , 1979
AbstractWe present new local groundwater-level rise data from two Late Glacial aeolian dunes, located near Barendrecht and Oud-Alblas in the western Rhine-Meuse delta. These data are based on AMS radiocarbon dating of terrestrial macrofossils, collected from the base of peat formed on the slopes of these dunes. This method avoids contamination of bulk peat samples by old soil carbon or younger rootlets and rhizomes, as well as the hardwater effect. The new data are used to assess the reliability of previously published groundwater-level index data based on conventional radiocarbon dating of bulk basal peat samples from the slopes of the Late Glacial aeolian dunes at Barendrecht, Hillegersberg, Bolnes and Wijngaarden, all located in the western Rhine-Meuse delta.Comparison of the new and published groundwater-level data shows no significant systematic difference between conventionally dated bulk peat samples and AMS-dated samples of terrestrial macrofossils. The new data from the dune at Barendrecht confirm the reliability of the younger than 6600 cal yr BP age-depth data from the dunes at Hillegersberg and near Bolnes. This result supports the validity of this part of the mean sea-level (MSL) curve for the western Netherlands. Consequently, the position of the groundwater-level curve for Flevoland (central Netherlands) below this MSL curve can most likely be attributed to differential land-level movement.The available data show that the groundwater-gradient effect in the western Rhine-Meuse delta became less than 5 cm/km after 6600 cal yr BP. Finally, temporal correlation between temporary increases in local groundwater-level rise with known shifts of river courses in the delta plain suggests, that avulsions can explain sudden local deviations from the trend in groundwater-level rise. A general conclusion of this study is that a complex relationship exists between sea level and local delta-plain water levels.