We find the exact bound-state solutions and normalization constant for the Dirac equation with scalar-vector-pseudoscalar interaction terms for the generalized Hulthén potential in the case where we have a particular mass function m(x). We also search the solutions for the constant mass where the obtained results correspond to the ones when the Dirac equation has spin and pseudospin symmetry, respectively. After giving the obtained results for the non-relativistic case, we search then the energy spectra and corresponding upper and lower components of Dirac spinor for the case of P T -symmetric forms of the present potential.