A recently proposed approach to relativistic quantum mechanics (Grave de Peralta, Poveda, Poirier in Eur J Phys 42:055404, 2021) is applied to the problem of a particle in a quadratic potential. The methods, both exact and approximate, allow one to obtain eigenstate energy levels and wavefunctions, using conventional numerical eigensolvers applied to Schrödinger-like equations. Results are obtained over a nine-order-of-magnitude variation of system parameters, ranging from the non-relativistic to the ultrarelativistic limits. Various trends are analyzed and discussed—some of which might have been easily predicted, others which may be a bit more surprising.