We generalize the previously developed relativistic approach for electroweak properties of two-particle composite systems to the case of nonzero spin. This approach is based on the instant form of relativistic Hamiltonian dynamics. We use a special mathematical technique to parameterize matrix elements of electroweak current operators in terms of form factors. The parameterization is a realization of the generalized Wigner-Eckart theorem for the Poincaré group, used when considering composite-system form factors as distributions corresponding to reduced matrix elements. The electroweak-current matrix element satisfies the relativistic covariance conditions and also automatically satisfies the conservation law in the case of an electromagnetic current.