Abstract. The relativistic quasiparticle time-blocking approximation (RQTBA) is applied to the description of nuclear excitation modes of astrophysical interest. This method is based on the meson-nucleon Lagrangian and goes beyond the standard relativistic quasiparticle random-phase approximation (RQRPA) by treating the coupling between single quasiparticles and collective vibrations of the nucleus. We calculate electric dipole transitions and Gamow-Teller modes in the (p,n) direction in a few Sn isotopes and obtain the rates of (n,γ) and β − -decay, processes which govern the r-process nucleosynthesis, in a unified RQTBA framework. Gamow-Teller transitions in the (n,p) branch, which in principle can serve for the modeling of stellar evolution, are also investigated, and 90 Zr is taken as a study case.