This paper presents an investigation of self-focusing of a quadruple Gaussian laser beam in collisionless magnetized plasma. The nonlinearity due to ponderomotive force which arises on account of nonuniform intensity distribution of the laser beam is considered. The nonlinear partial differential equation governing the evaluation of complex envelope in the slowly varying envelope approximation is solved using a paraxial formalism. The self-focusing mechanism in magnetized plasma, in the presence of self-compression mechanism will be analyzed in contrast to the case in which it is absent. It can be observed that, in case of ponderomotive nonlinearity, the self-compression mechanism obstructs the pulse self-focusing above a certain intensity value. The effect of an external magnetic field is to generate pulses with smaller spot size and shorter compression length. The lateral separation parameter and the initial intensity of the laser beam play a crucial role on focusing and compression parameters. Also, the three-dimensional analysis of pulse propagation is presented by coupling the self-focusing equation with the self-compression one.