Die vorliegende Arbeit befasst sich mit der Untersuchung der Transporteigenschaften inklusive Ladungsträgerdynamik von quasi-zweidimensionalen organischen Ladungstransfersalzen. Diese Materialien besitzen eine Schichtstruktur und weisen eine hohe Anisotropie der elektrischen Leitfähigkeit auf. Aufgrund der geringen Bandbreite und der niedrigen Ladungsträgerkonzentration gehören die Materialien zu den stark-korrelierten Elektronensystemen, wobei sich die elektronischen Eigenschaften leicht durch chemische Modifikationen oder äußere Parameter beeinflussen lassen. Die starken Korrelationen resultieren in Metall-Isolator-Übergängen, die sich beim Mott-isolierenden Zustand in einer homogenen Verteilung und beim ladungsgeordneten Zustand in einer periodischen Anordnung der lokalisierten Ladungsträger manifestieren. Mithilfe der Fluktuationsspektroskopie, die sich mit der Analyse der zeitabhängigen Widerstandsfluktuationen befasst, konnten im Rahmen dieser Arbeit neue Erkenntnisse über die Ladungsträgerdynamik in den verschiedenen elektronischen Zuständen gewonnen werden. Die Metall-Isolator-Übergänge in den untersuchten Systemen, die auf den Molekülen BEDT-TTF (kurz: ET) bzw. BEDT-TSF (kurz: BETS) basieren, sind von der Stärke der strukturellen Dimerisierung abhängig und wurden durch die Kühlrate, eine Zugbelastung sowie durch die Ausnutzung des Feldeffekts beeinflusst. In den Systemen κ-(BETS)₂Mn[N(CN)₂]₃, κ-(ET)₂Hg(SCN)₂Cl und κ-(ET)₂Cu[N(CN)₂]Br sind die Donormoleküle als Dimere angeordnet, sodass aufgrund der effektiv halben Bandfüllung bei genügender Korrelationsstärke häufig ein Mott-Übergang auftritt. In κ-(ET)₂Hg(SCN)₂Cl führt eine schwächere Dimerisierung jedoch zu einem Ladungsordnungsübergang, der mit elektronischer Ferroelektrizität einhergeht. Dabei wird die polare Ordnung durch eine Ladungsdisproportionierung innerhalb der Dimere verursacht. Die Widerstandsfluktuationen zeigen am ferroelektrischen Übergang einen starken Anstieg der spektralen Leistungsdichte, eine Abhängigkeit vom angelegten elektrischen Feld sowie Zeitabhängigkeiten, die auf räumliche Korrelationen der fluktuierenden Prozesse hindeuten. Diese Eigenschaften wurden ebenfalls für das System κ-(BETS)₂Mn[N(CN)₂]₃ beobachtet. Hierbei wurden mithilfe der dielektrischen Spektroskopie ebenfalls Hinweise auf Ferroelektrizität gefunden, während durch die Analyse der stromabhängigen Widerstandsfluktuationen die Größe der polaren Regionen abgeschätzt werden konnte. Das System κ-(ET)₂Cu[N(CN)₂]Br, das in einer Feldeffekttransistor-Struktur vorliegt, erlaubt neben der Untersuchung des Bandbreiten-getriebenen Mott-Übergangs durch die Zugbelastung eines Substrats auch die Beeinflussung der elektronischen Eigenschaften durch die Änderung der Bandfüllung mittels elektrostatischer Dotierung. Hierbei wurden starke Abhängigkeiten des Widerstands von der Gatespannung beobachtet und Ähnlichkeiten der Ladungsträgerdynamik zu herkömmlichen Volumenproben gefunden. Bei den Systemen θ-(ET)₂MM'(SCN)₄ mit MM'=CsCo, RbZn, TlZn tritt ein Ladungsordnungsübergang auf, der eine starke Abhängigkeit von der Kühlrate zeigt. Durch schnelles Abkühlen lässt sich der Phasenübergang erster Ordnung kinetisch vermeiden, wodurch ein Ladungsglaszustand realisiert wird. Dieser metastabile Zustand zeigt neuartige physikalische Eigenschaften mit Ähnlichkeiten zu herkömmlichen Gläsern und wurde als Folge der geometrischen Frustration der Ladung auf einem Dreiecksgitter diskutiert. Im Rahmen dieser Arbeit konnte die Ladungsträgerdynamik in den verschiedenen Ladungszuständen von unterschiedlich frustrierten Systemen verglichen werden. Zur Realisierung sehr schneller Abkühlraten wurde dafür eine Heizpulsmethode verwendet und weiterentwickelt. Der Ladungsglaszustand zeigte dabei für verschiedene Systeme ein deutlich niedrigeres Rauschniveau als der ladungsgeordnete Zustand. In Kombination mit Messungen der thermischen Ausdehnung und kühlratenabhängiger Transportmessungen wurde in den Systemen mit der stärksten Frustration die Existenz eines strukturellen Glasübergangs nachgewiesen, der von einer starken Verlangsamung der Ladungsträgerdynamik begleitet wird. Diese Erkenntnisse werfen ein neues Licht auf die bisherige rein elektronische Interpretation des Ladungsglaszustands und heben den Einfluss der strukturellen Freiheitsgrade hervor.