Since the glassy alloys have structural homogeneity on a nanoscopic scale and wide supercooled liquid region, ΔTx (temperature interval between glass transition and crystallization), these materials are recognized as promising micro/nano-materials for nanomachines or micro electro-mechanical systems (MEMS). As one of the micro/nano components, the hard magnetic one is immensely desired. We systematically investigated the effect of metalloids composition in Fe-Pt-metalloids alloys on the glass-forming ability, and developed Fe55Pt25Si16B2P2, Fe55Pt25Si15B3P2 and (Fe0.55Pt0.25Si0.16B0.02P0.02)96Zr4 (at%) glassy alloys with ΔTx of 37 K and 48 K, respectively. With structural change from the glassy phase to a nano-composite structure consisting of L10 FePt phase, the coercivity significantly increases from 15 A/m to 170 kA/m for the former one. There is possibility for making the hard magnetic components by the fabrication in ΔTx followed by annealing for the crystallization of the FePt–based glassy alloys. Considering the high magnetocrystalline anisotropy of the L10 phase, which should lead to room-temperature ferromagnetic stability for component sizes as small as nm-order, these Fe-Pt-based glassy alloys have great potential for fabrication of hard magnetic micro/nano structures.