BackgroundAcute ischemic stroke (AIS) is the most common type of cerebrovascular disease and is a leading cause of disability and death worldwide. Recently, a study suggested that transformation of microglia from the pro-inflammatory M1 state to the anti-inflammatory and tissue-reparative M2 phenotype may be an effective therapeutic strategy for ischemic stroke. Celastrol, a traditional oriental medicine, may have anti-inflammatory and neuroprotective effects. However, the underlying mechanisms remain unknown.MethodsWe first determined the expression levels of inflammatory factors in patients and rodent models associated with AIS; we then determined the anti-inflammatory effects of celastrol in AIS, both in vivo and in vitro, using animal models of middle cerebral artery occlusion (MCAO) and cell models of oxygen-glucose deprivation (OGD) treatment with or without celastrol, respectively.ResultsThe results indicated that expression of both inflammatory (interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α) cytokines, as well as the anti-inflammatory cytokine, IL-33, and IL-10, were increased following AIS in patients and in animal models. Furthermore, in vitro experiments confirmed that celastrol treatment decreased inflammatory cytokine expression induced by OGD through an IL-33/ST2 axis-mediated M2 microglia/macrophage polarization. Finally, celastrol is protected against ischemic-induced nerve injury, both in vivo and in vitro.ConclusionsTaken together, these data suggest that celastrol post-treatment reduces ischemic stroke-induced brain damage, suggesting celastrol may represent a novel potent pharmacological therapy.