Feed efficiency is a major constraint in the beef industry and has a significant negative correlation with residual feed intake (RFI). RFI is widely used as a measure of feed efficiency in beef cattle and is independent of economic traits such as body weight and average daily gain. However, key traits with commonality or specificity among beef cattle breeds at the same level of RFI have not been reported. Accordingly, the present study hypothesized that signatures associated with feed efficiency would have commonality or specificity in the liver of cattle breeds at the same RFI level. By comparing and integrating liver transcriptome data, we investigated the critical signatures closely associated with RFI in beef cattle using weighted co-expression network analysis, consensus module analysis, functional enrichment analysis and protein network interaction analysis. The results showed that the consensus modules in Angus and Charolais cattle were negatively correlated, and four (turquoise, red, tan, yellow) were significantly positively correlated in Angus liver, while (turquoise, red) were significantly negatively correlated in Charolais liver. These consensus modules were found to be primarily involved in biological processes such as substance metabolism, energy metabolism and gene transcription, which may be one of the possible explanations for the difference in feed efficiency between the two beef breeds. This research also identified five key candidate genes, PLA2G12B, LCAT, MTTP, LCAT, ABCA1 and FADS1, which are closely associated with hepatic lipid metabolism. The present study has identified some modules, genes and pathways that may be the major contributors to the variation in feed efficiency among different cattle breeds, providing a new perspective on the molecular mechanisms of feed efficiency in beef cattle and a research basis for investigating molecular markers associated with feed efficiency in beef cattle.