Microorganisms (bacteria, yeast, and microalgae) are a promising resource for products of high value such as nutrients, pigments, and enzymes. The majority of these compounds of interest remain inside the cell, thus making it necessary to extract and purify them before use. This review presents the challenges and opportunities in the production of these compounds, the microbial structure and the location of target compounds in the cells, the different procedures proposed for improving extraction of these compounds, and pulsed electric field (PEF)‐assisted extraction as alternative to these procedures. PEF is a nonthermal technology that produces a precise action on the cytoplasmic membrane improving the selective release of intracellular compounds while avoiding undesirable consequences of heating on the characteristics and purity of the extracts. PEF pretreatment with low energetic requirements allows for high extraction yields. However, PEF parameters should be tailored to each microbial cell, according to their structure, size, and other factors affecting efficiency. Furthermore, the recent discovery of the triggering effect of enzymatic activity during cell incubation after electroporation opens up the possibility of new implementations of PEF for the recovery of compounds that are bounded or assembled in structures. Similarly, PEF parameters and suspension storage conditions need to be optimized to reach the desired effect. PEF can be applied in continuous flow and is adaptable to industrial equipment, making it feasible for scale‐up to large processing capacities.