Sparse Bayesian learning (SBL) has emerged as a fast and competitive method to perform sparse processing. The SBL algorithm, which is developed using a Bayesian framework, approximately solves a non-convex optimization problem using fixed point updates. It provides comparable performance and is significantly faster than convex optimization techniques used in sparse processing. We propose a signal model which accounts for dictionary mismatch and the presence of errors in the weight vector at low signal-to-noise ratios. A fixed point update equation is derived which incorporates the statistics of mismatch and weight errors. We also process observations from multiple dictionaries. Noise variances are estimated using stochastic maximum likelihood. The derived update equations are studied quantitatively using beamforming simulations applied to direction-of-arrival (DoA). Performance of SBL using single-and multi-frequency observations, and in the presence of aliasing, is evaluated. SwellEx-96 experimental data demonstrates qualitatively the advantages of SBL.