This paper presents an efficient integrated multidisciplinary design optimization method for shaping a high-pressure cooling turbine blade in aero engines. This approach utilizes a novel regression/interpolation combination surrogate model (R/ICSM), facilitating comprehensive design optimization through collaborative coupling feature parameterization modeling and numerical simulation analysis across various disciplines. The optimized blade adjusts the load distribution on its surface, effectively eliminating flow separation at the tip and trailing edge. Notably, the optimized blade achieves a 0.69% increase in isentropic efficiency while satisfying aerodynamic, strength, and structural constraints. This highlights the effectiveness and progressiveness of the multidisciplinary design optimization method for a cooling turbine blade based on the R/ICSM in enhancing overall performance. It offers a novel and feasible approach for turbine blade design optimization and provides valuable insights for future research and applications.