2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2015
DOI: 10.1109/igarss.2015.7326954
|View full text |Cite
|
Sign up to set email alerts
|

Reliability assessment for remote sensing data: Beyond Cohen's kappa

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 12 publications
(8 citation statements)
references
References 12 publications
0
7
0
1
Order By: Relevance
“…Os resultados das classificações foram avaliados a partir da matriz de confusão, para quantificar os erros de omissão e comissão de cada classe, e coeficiente kappa (CONGALTON, 1991). Apesar das limitações do kappa terem sido, amplamente, discutidas pela literatura (FOODY, 2020;KERR;FISCHER;REULKE, 2015;PONTIUS JR;MILLONES, 2011), não existe uma concordância entre os pesquisadores sobre possíveis substitutos. Além disso, uma gama de pesquisas ainda utiliza o kappa para quantificar acurácia de mapeamentos temáticos por GEOBIA (MAXWELL et al, 2019;PRADO;RUIZ, 2019;COLARES et al, 2015;BELGIU;STROBL, 2014;FRANCISCO;KIM et al, 2011).…”
Section: Avaliação E Comparação Dos Resultadosunclassified
“…Os resultados das classificações foram avaliados a partir da matriz de confusão, para quantificar os erros de omissão e comissão de cada classe, e coeficiente kappa (CONGALTON, 1991). Apesar das limitações do kappa terem sido, amplamente, discutidas pela literatura (FOODY, 2020;KERR;FISCHER;REULKE, 2015;PONTIUS JR;MILLONES, 2011), não existe uma concordância entre os pesquisadores sobre possíveis substitutos. Além disso, uma gama de pesquisas ainda utiliza o kappa para quantificar acurácia de mapeamentos temáticos por GEOBIA (MAXWELL et al, 2019;PRADO;RUIZ, 2019;COLARES et al, 2015;BELGIU;STROBL, 2014;FRANCISCO;KIM et al, 2011).…”
Section: Avaliação E Comparação Dos Resultadosunclassified
“…(1) ALS data allowed for an automated and more accurate identification of AAL in terms of classification accuracy (>90%) and spatial resolution (<1.0 m) than did other RS platforms [53][54][55][56][57][58][59][60][61][62][63][64]. Potential improvements in process of AAL identification may be achieved using some qualitative variable of ALS data (e.g., intensity) or alternatively through multispectral ALS data [65][66][67][68].…”
Section: Discussionmentioning
confidence: 99%
“…The accuracy of the ALS-based spatial identification of AAL was assessed by an error matrix, including calculations of the producer's, user's, and overall accuracies, as well as the Cohen's kappa [55]. We used five reference areas (1 × 1 km) located in the center, northwest, northeast, southwest, and southeast of the study area (Figure 1).…”
Section: Validation Of the Models And Mapsmentioning
confidence: 99%
“…Usually they aim to outperform Kappa and correct some of its associated problems. These include, among others, the F-Score (Pérez-Hoyos et al 2020), Scott's pi statistic (Gwet 2002) and Krippendorff's a-coefficient (Kerr et al 2015). These metrics are not widely used and they provide similar information to Kappa, which is why we do not recommend that they be used in a standard LUC validation exercise.…”
Section: Validation Of Single Land Use Cover Mapsmentioning
confidence: 99%