Reliability prediction for complex systems utilizing prognostic methods has attracted increasing attention. Furthermore, achieving accurate reliability predictions for complex systems necessitates considering the interaction between components and the multivariate functional relationship that exists among them. This paper proposes a bi‐level method to evaluate the variability of degradation processes and predictive reliability based on the profile monitoring approach for multicomponent systems. Firstly, a multivariate profile structure is introduced to model the framework of degradation analysis in scenarios where there exists stochastic dependency and a multivariate functional relationship between the degradation processes of components. At the component level, the objective is to evaluate the variability of the degradation process for each component considering the presence of stochastic dependence. For the system level analysis, the proposed approach enables the prediction of degradation variability and system reliability by considering the functional relationships among components, without the need for direct calculation of individual component reliabilities. The performance of the proposed model is evaluated through a numerical study and sensitivity analysis conducted on a multicomponent system with a k‐out‐of‐n structure. The results demonstrate the model's notable flexibility and efficiency.