Purpose
Atlas (C1) fractures are commonly rated according to the Gehweiler classification, but literature on its reliability is scarce. In addition, evaluation of fracture stability and choosing the most appropriate treatment regime for C1-injuries are challenging. This study aimed to investigate the interobserver reliability of the Gehweiler classification and to identify whether evaluation of fracture stability as well as the treatment of C1-fractures are consistent among spine surgeons.
Methods
Computed tomography images of 34 C1-fractures and case-specific information were presented to six experienced spine surgeons. C1-fractures were graded according to the Gehweiler classification, and the suggested treatment regime was recorded in a questionnaire. For data analyses, SPSS was used, and interobserver reliability was calculated using Fleiss’ kappa (κ) statistics.
Results
We observed a moderate reliability for the Gehweiler classification (κ = 0.50), the evaluation of fracture stability (κ = 0.50), and whether a surgical or non-surgical therapy was indicated (κ = 0.53). Type 1, 2, 3a, and 5 fractures were rated stable and treated non-surgically. Type 3b fractures were rated unstable in 86.7% of cases and treated by surgery in 90% of cases. Atlas osteosynthesis was most frequently recommended (65.4%). Overall, 25.8% of type 4 fractures were rated unstable, and surgery was favoured in 25.8%.
Conclusion
We found a moderate reliability for the Gehweiler classification and for the evaluation of fracture stability. In particular, diverging treatment strategies for type 3b fractures emphasise the necessity of further clinical and biomechanical investigations to determine the optimal treatment of unstable C1-fractures.