The foundation pillars of successful technical products are performance, cost, and reliability. The development of reliable components and the operation of highly available systems is a comprehensive engineering task combining probability theory, materials science, and experience. Components have to be as reliable as necessary in order to build systems that are dependable and cost efficient during the whole life cycle. Reliability engineering is an ongoing process starting at the conceptual phase of a product design and continuing throughout all phases of a product life cycle. The primary objective is to identify and eliminate potential reliability problems as early as possible. While it may never be too late to improve the reliability of a product, corrections are orders of magnitude less expensive in the early design phase rather than once the product is manufactured and in service. This paper comprises an introduction to basic reliability engineering terms, reliability analysis methods such as reliability block diagrams, failure mode and effects analysis, Markov processes, the concept of redundancy, failure rate prediction models and the physics of failure approach, qualification and accelerated reliability testing. Examples of electronic and optical components, as well as complex opto-electronic systems and networks are given for illustration.