See inside back cover or http://www.jomms.org for submission guidelines.Regular subscription rate: $500 a year.Subscriptions, requests for back issues, and changes of address should be sent to Mathematical Sciences Publishers, 798 Evans Hall, Department of Mathematics, University of California, Berkeley, CA 94720-3840.
ELASTIC CONSTANTS AND THERMAL EXPANSION AVERAGES OF A NONTEXTURED POLYCRYSTAL
ROLAND DEWITThis paper gives expressions for the overall average elastic constants and thermal expansion coefficients of a polycrystal in terms of its single crystal components. The polycrystal is assumed to be statistically homogeneous, isotropic, and perfectly disordered. Upper and lower bounds for the averages are easily found by assuming a uniform strain or stress. The upper bound follows from Voigt's assumption that the total strain is uniform within the polycrystal while the lower bound follows from Reuss' original assumption that the stress is uniform. A self-consistent estimate for the averages can be found if it is assumed that the overall response of the polycrystal is the same as the average response of each crystallite. The derivation method is based on Eshelby's theory of inclusions and inhomogeneities. We define an equivalent inclusion, which gives an expression for the strain disturbance of the inhomogeneity when external fields are applied. The equivalent inclusion is then used to represent the crystallites. For the self-consistent model the average response of the grains has to be the same as the overall response of the material, or the average strain disturbance must vanish. The result is an implicit equation for the average polycrystal elastic constants and an explicit equation for the average thermal expansion coefficients. For the particular case of cubic symmetry the results can be reduced to a cubic equation for the selfconsistent shear modulus. For lower symmetry crystals it is best to calculate the self-consistent bulk and shear modulus numerically.
IntroductionA polycrystal, whose properties vary in a complicated fashion from point to point over a small microscopic length scale, may appear on average to be uniform or perhaps, more generally, its properties appear to vary smoothly. The determination of such overall properties from the properties and geometrical arrangement of the constituent monocrystal grains is our aim. In the simplest case the polycrystal is assumed to be statistically homogeneous, isotropic, and perfectly disordered. General expressions for averages can then be derived. Many different properties can be averaged, such as dielectric constants, diffusivity, elastic constants, electrical conductivity, magnetic permeability, magnetostriction, piezoelectric constants, thermal conductivity, or thermal expansion. In this paper we treat the elastic constants, which have already received more attention than most other physical properties, and the thermal expansion. Elastic constants are fundamental physical data needed for the characterization of materials. In addition to their fundam...