Background: Scoliosis is a spine abnormal deviation, which is an idiopathic disorder among children and adolescents. As a matter of the fact, distribution of loads on the patient's spine and load-carrying capacity of the vertebral column are both random variables. Therefore, the probabilistic approach may consider as a sophisticated method to deal with this problem. Method: Reliability analysis is a probabilistic-based approach to consider the uncertainties of load and resistance of the vertebral column. The main contribution of this paper is to compare the reliability level of a normal and scoliosis spinal. To do so, the numerical analyses associated with the inherent random parameters of bones and applied load are performed. Then, the reliability indices for all vertebrae and discs are determined. Accordingly, as the main innovation of this paper, the system reliability indices of the spinal column for both normal and damaged backbone systems are represented. Results: Based on the required reliability index for normal spinal curvature the target system reliability level for scoliosis disorder is proposed. Conclusion: Since the proposed target reliability index is based on the strength limit state of the vertebral column, it can be considered as a reliability level for any proposed treatment approaches.