Physiological constraints in insects are related to several large-scale processes such as species distribution and thermal adaptation. Here, we fill an important gap in ecophysiology knowledge by accessing the relationship between temperature and embrionary development time in four dragonfly species. We evaluated two questions (1) what is the effect of temperature on the development time of Odonata eggs, and (2) considering a degree-day relationship, could a simple linear model describe the dependence of embrionary development time on temperature or it is better described by a more complex non-linear relation. Egg development time of Erythrodiplax fusca (Rambur), Micrathyria hesperis Ris, Perithemis mooma Kirby, and Miathyria simplex (Rambur) (Odonata: Libellulidae) were evaluated. We put the eggs at different temperatures (15, 20, 25, and 30°C) and counted the number of hatched larvae daily. A nonlinear response of the development to the temperature was found, differing from the expected pattern for standard degree-day analysis. Furthermore, we observed that there is a similar process in the development time and hatching synchronization between species, with all species presenting faster egg development at high temperatures. Species-specific differences are more evident at lower temperatures (15°C), with no egg development in M. simplex. Only E. fusca was relatively insensitive to temperature changes with similar hatching rates in all treatments.