2017
DOI: 10.1016/j.ejrnm.2016.11.003
|View full text |Cite
|
Sign up to set email alerts
|

Reliability of magnetic susceptibility weighted imaging in detection of cerebral microbleeds in stroke patients

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

1
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 21 publications
1
0
0
Order By: Relevance
“…The high spatial resolution of SWI and increased contrast of SWI increased the confidence of the radiologists in the diagnosis, especially for the less experienced ones. The SWI demonstrated a substantial to almost complete interobserver agreement for identification of hemorrhagic, ischemic, and the whole lesions, which was consistent with El-Serougy et al [29] study, which revealed an almost perfect agreement for the detection of cerebral microbleed with a k value of 0.84. Potential problems connected to the use of SWI, according to Bosemani et al [30], include pitfalls owing to variations in blood oxygenation levels, blood flow, potential pitfalls related to magnetic field intensity, pitfalls due to misinterpretation of localization on minIP images, and mimickers such as gas.…”
Section: Discussionsupporting
confidence: 88%
“…The high spatial resolution of SWI and increased contrast of SWI increased the confidence of the radiologists in the diagnosis, especially for the less experienced ones. The SWI demonstrated a substantial to almost complete interobserver agreement for identification of hemorrhagic, ischemic, and the whole lesions, which was consistent with El-Serougy et al [29] study, which revealed an almost perfect agreement for the detection of cerebral microbleed with a k value of 0.84. Potential problems connected to the use of SWI, according to Bosemani et al [30], include pitfalls owing to variations in blood oxygenation levels, blood flow, potential pitfalls related to magnetic field intensity, pitfalls due to misinterpretation of localization on minIP images, and mimickers such as gas.…”
Section: Discussionsupporting
confidence: 88%