The safety and reliability of bridges gradually decrease over time under the influence of disadvantageous environmental factors, primarily due to reinforcement corrosion caused by chloride ingress. The traditional lateral load distribution (LLD) theory does not consider the influence of corrosion, which degrades the accuracy of bridge performance and reliability calculation. A time-dependent reliability assessment method for simply supported T-beam bridges is proposed in this paper, which considers the influence of reinforcement corrosion on LLD. Firstly, the steel corrosion process and degree are predicted based on the chloride ingress model, into which the water/cement ratio and concrete strength are innovatively introduced in order to improve the prediction accuracy. Secondly, the effective stiffness calculation method for corroded reinforcement bridges is established with the moment of inertia and section crack condition employed. Thirdly, the modified eccentric compression method is improved by the effective stiffness and iterative algorithm, which is suitable for the LLD calculation of corroded reinforcement bridges. The time-dependent vehicle load effect can be computed combined with the probability distribution of live load. Finally, the time-dependent reliability of the flexural bearing capacity is obtained by the Monte Carlo method and Bayesian theory without prior information. A simply supported bridge with five T-beams is taken as an example for analysis. It is indicated that the results calculated by the traditional reliability method are conservative, which cannot make a true and accurate evaluation. The method proposed in this paper can effectively reduce the assessment error caused by model uncertainty while considering the interaction between reinforcement corrosion and vehicle live load effect.