Abstract-Swarm intelligence algorithms (SIA) are bioinspired techniques based on the intelligent behavior of various animals, birds, and insects. SIA are problemindependent and are efficient in solving real world complex optimization problems to arrive at the optimal solutions. Monkey behavior based algorithms are one among the SIAs first proposed in 2007. Since then, several variants such as Monkey search, Monkey algorithm, and Spider Monkey optimization algorithms have been proposed. These algorithms are based on the tree or mountain climbing and food searching behavior of monkeys either individually or in groups. They were designed with various representations, covering different behaviors of monkeys and hybridizing with the efficient operators and features of other SIAs and Genetic algorithm. They were explored for applications in several fields including bioinformatics, civil engineering, electrical engineering, networking, data mining etc. In this survey, we provide a comprehensive overview of monkey behavior based algorithms and their related literatures and discuss useful research directions to provide better insights for swarm intelligence researchers.