Given mobile devices ubiquity and capabilities, some researchers now consider them as resource providers of distributed environments called mobile Grids for running resource intensive software. Therefore, job scheduling has to deal with device singularities, such as energy constraints, mobility and unstable connectivity. Many existing schedulers consider at least one of these aspects, but their applicability strongly depends on information that is unavailable or difficult to estimate accurately, like job execution time. Other efforts do not assume knowing job CPU requirements but ignore energy consumption due to data transfer operations, which is not realistic for data-intensive applications. This work, on the contrary, considers the last as non negligible and known by the scheduler. Under these assumptions, we conduct a performance study of several traditional scheduling heuristics adapted to this environment, which are applied with the known information of jobs but evaluated along with job information unknown to the scheduler. Experiments are performed via a simulation software that employs hardware profiles derived from real mobile devices. Our goal is to contribute to better understand both the capabilities and limitations of this kind of schedulers in the incipient area of mobile Grids.