Recently, cortical correlates of specific dream contents have been reported, such as the activation of the sensorimotor cortex during dreamed hand clenching. Yet, despite a close resemblance of such activation patterns to those seen during the corresponding wakeful behaviour, the causal mechanisms underlying specific dream contents remain largely elusive. Here, we aimed to investigate the causal role of the sensorimotor cortex in generating movement and bodily sensations during REM sleep dreaming. Following bihemispheric transcranial direct current stimulation (tDCS) or sham stimulation, guided by functional mapping of the primary motor cortex, naive participants were awakened from REM sleep and responded to a questionnaire on bodily sensations in dreams. Electromyographic (EMG) and electroencephalographic (EEG) recordings were used to quantify physiological changes during the preceding REM period. We found that tDCS, compared to sham stimulation, significantly decreased reports of dream movement, especially of repetitive actions. Other types of bodily experiences, such as tactile or vestibular sensations, were not affected by tDCS, confirming the specificity of stimulation effects to movement sensations. In addition, tDCS reduced EEG interhemispheric coherence in parietal areas and affected the phasic EMG correlation between both arms. These findings show that a complex temporal reorganization of the motor network co-occurred with the reduction of dream movement, revealing a link between central and peripheral motor processes and movement sensations of the dream self. tDCS over the sensorimotor cortex interferes with dream movement during REM sleep, which is consistent with a causal contribution to dream experience and has broader implications for understanding the neural basis of self-experience in dreams. Dreams are vivid, often emotionally intense and narratively complex experiences occurring in sleep. In our dreams, we feel immersed in alternative worlds and have the experience of interacting with other persons and objects. Often this involves the subjective experience of moving through the dream world, and movement is among the most frequently reported dream experiences, second only to visual imagery 1,2. Yet these rich subjective experiences stand in stark contrast to the outward unresponsiveness and lack of observable behaviour during sleep. This study aimed to investigate the causal mechanisms underlying dream movement and bodily experience in dreams by applying transcranial direct current stimulation (tDCS) over sensorimotor areas. While