2023
DOI: 10.32614/rj-2023-004
|View full text |Cite
|
Sign up to set email alerts
|

remap: Regionalized Models with Spatially Smooth Predictions

Abstract: Traditional spatial modeling approaches assume that data are second-order stationary, which is rarely true over large geographical areas. A simple way to model nonstationary data is to partition the space and build models for each region in the partition. This has the side effect of creating discontinuities in the prediction surface at region borders. The regional border smoothing approach ensures continuous predictions by using a weighted average of predictions from regional models. The R package remap is an … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 21 publications
(42 reference statements)
0
0
0
Order By: Relevance