Catechol is a toxic biomolecule due to its low degradability to the ecosystem and unpredictable impact on human health. In this work, we have investigated the catechol sensing properties of pristine and transition metal (Ag, Au, Pd, and Ti) decorated γ-graphyne (GY) systems by employing the density functional theory and first-principles molecular dynamics approach. Simulation results revealed that Pd and Ti atom is more suitable than Ag and Au atom for the decoration of the GY structure with a large charge transfer of 0.29e and 1.54e from valence d-orbitals of the Pd/Ti atom to the carbon-2p orbitals of GY. The GY + Ti system offers excellent electrochemical sensing towards catechol with charge donation of 0.14e from catechol O-p orbitals to Ti-d orbitals, while the catechol molecule is physisorbed to pristine GY with only 0.04e of charge transfer. There exists an energy barrier of 5.19 eV for the diffusion of the Ti atom, which prevents the system from metal–metal clustering. To verify the thermal stability of the sensing material, we have conducted the molecular dynamics simulations at 300 K. We have reported feasible recovery times of 2.05 × 10−5 s and 4.7 × 102 s for sensing substrate GY + Pd and GY + Ti, respectively, at 500 K of UV light.