In this paper, we study blow‐up phenomena of the following p‐Laplace type nonlinear parabolic equations
ut=∇·ρ(|∇u|p)|∇u|p−2∇u+f(x,t,u),inΩ×(0,t∗),
under nonlinear mixed boundary conditions
ρ(|∇u|p)|∇u|p−2∂u∂n+θ(z)ρ(|u|p)|u|p−2u=h(z,t,u),onΓ1×(0,t∗),
and
u=0 on Γ2 × (0, t∗) such that
normalΓ1∪normalΓ2=∂normalΩ, where f and h are real‐valued C1‐functions. To discuss blow‐up solutions, we introduce new conditions: For each x ∈ Ω, z ∈ ∂Ω, t > 0, u > 0, and v > 0,
false(Dp0.1em1false)0.1em:0.1emαFfalse(x,t,ufalse)≤uffalse(x,t,ufalse)+β1up+γ1,3.7emαHfalse(z,t,ufalse)≤uhfalse(z,t,ufalse)+β2up+γ2,false(Dp0.1em2false)0.1em:0.1emδvρfalse(vfalse)≤Pfalse(vfalse),
for some constants α, β1, β2, γ1, γ2, and δ satisfying
α>2,δ>0,β1+λR+1λSβ2≤αδp−1ρmλR,and0≤β2≤αδp−1ρmλS,
where
ρm:=infw>0ρfalse(wfalse),
Pfalse(vfalse)=∫0vρfalse(wfalse)dw,
Ffalse(x,t,ufalse)=∫0uffalse(x,t,wfalse)dw, and
Hfalse(x,t,ufalse)=∫0uhfalse(x,t,wfalse)dw. Here, λR is the first Robin eigenvalue and λS is the first Steklov eigenvalue for the p‐Laplace operator, respectively.