The Sachdev-Ye-Kitaev (SYK) model describes a collection of randomly interacting Majorana fermions that exhibits profound connections to quantum chaos and black holes. We propose a solid-state implementation based on a quantum dot coupled to an array of topological superconducting wires hosting Majorana zero modes. Interactions and disorder intrinsic to the dot mediate the desired random Majorana couplings, while an approximate symmetry suppresses additional unwanted terms. We use random-matrix theory and numerics to show that our setup emulates the SYK model (up to corrections that we quantify) and discuss experimental signatures. DOI: 10.1103/PhysRevB.96.121119 Introduction. Majorana fermions provide building blocks for many novel phenomena. As one notable example, Majorana-fermion zero modes [1,2] capture the essence of non-Abelian statistics and topological quantum computation [3,4], and correspondingly now form the centerpiece of a vibrant experimental effort [5][6][7][8][9][10][11][12][13][14][15][16]. More recently, randomly interacting Majorana fermions governed by the "Sachdev-YeKitaev (SYK) model" [17][18][19] were shown to exhibit sharp connections to chaos, quantum-information scrambling, and black holes-naturally igniting broad interdisciplinary activity (see, e.g., [20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39]). The goal of this Rapid Communication is to exploit hardware components of a Majorana-based topological quantum computer for a tabletop implementation of the SYK model, thus uniting these very different topics.The SYK Hamiltonian reads