Glyphosate is a non-selective herbicide that is used to control perennial weeds in agriculture. However, its vast application may result in glyphosate residues in the food chain. Due to its toxicity to non-target organisms, glyphosate-contaminated soils needed to be remediated, and bioremediation is a conventional remedial method. The success of this depends on the isolation of bacteria with the ability to degrade glyphosate. The goal of this study was to isolate glyphosate-degrading bacteria from the rhizosphere of maize and wheat with a repeated application history of glyphosate for 5–10 years and test their roles in promoting the growth of maize (Zea mays) and glyphosate degradation in vitro. Eleven isolated bacteria were inoculated, and their role in plant growth was compared at different levels (100 and 200 mg/kg) of glyphosate. The results revealed that E. ludwigii improved the highest shoot length by 26% and the root length by 34% compared to the control at 100 mg/kg. The relative water contents in leaves significantly improved by 58% using P. aeruginosa at 100 mg/kg. The maximum electrolyte leakage from leaves significantly reduced by 73% using E. ludwigii at 100 mg/kg compared to the control (uninoculated). A high-pressure liquid chromatography instrument was used to assess the glyphosate concentrations. The highest degradation of glyphosate was observed in treatments inoculated with E. ludwigii (99 and 40%), P. aeruginosa (95 and 39%), K. variicola, (91 and 38%) E. cloacae (92 and 38%), and S. liquefaciens (87 and 36%), respectively, at 100 and 200 mg/kg within 28 days. These five strains demonstrated a great potential for degrading glyphosate and promoting the growth of maize in vitro, and they will be further exploited for the biodegradation of glyphosate and the growth promotion of broader crop species in situ in the near future.