Sand control poses huge financial loses during production operations particularly in mature fields. It hinders economic oil production rates as well as damages downhole and surface equipment due to its abrasive action. Excessive sand production rates can plug the wellhead, flow lines, and separators which can result in detrimental well control situations. This paper will provide a comparative study on various sand control mechanisms by reviewing the latest advancements in sand management techniques.
This study evaluates the performance of through-tubing sand screens, internal gravel pack, cased hole expandable sand screen, modular gravel pack system, openhole standalone screen, multi-zone single trip gravel pack, slim gravel pack, and chemical sand consolidation mechanisms. Various field examples from Niger-Delta, Mahakam oil and gas block, and offshore Malaysia are examined to gain an insight about the application of aforementioned sand control methods for different type of reservoirs.
This study enables the operator to tackle the sand production problem according to the well construction changes during the life cycle of a well. The internal gravel pack completion system delivers a prolonged plateau production regime in shallow depths. In high drawdown conditions, chemical sand consolidation completion incurs early water breakthrough and elevated sand production. Chemical sand consolidation technique yields better results in deeper formations and its placement can be improvised by implementing coiled tubing and diversion techniques for multi-stage treatments. Depending on the well inclination, gas-water contact, producing zone type and thickness, well age, and economy, the completion types out of modular gravel pack, openhole standalone screen, slim gravel pack, and through tubing sand screen is recommended accordingly.
Acquiring offset data, well log analysis, particle size distribution and performing pressure tests will improve the data quality of the obtained reservoir properties. This will further help in the selection of the most suitable sand control method for the target reservoir.