Phytoextraction is a plant based-technique for removing toxic heavy metals from polluted soil. The experiment reported in this paper was undertaken to study the basic Cu phytoextraction potential of Sesamum indicum in comparison with Cyamopsis tetragonoloba for remediation of Cu contaminated soil in the framework of a pot-experiment. Plants were subjected to seven Cu concentrations (0, 25, 50, 100, 150, 200, and 300 mg kg −1 soil) for 12 weeks. The morphological (i.e. growth) and biochemical (i.e. chlorophyll) parameters of both the plant species were observed throughout the experimental period; the phytoextraction efficiency of S. indicum and C. tetragonoloba were also determined. Most growth parameters were reduced under high Cu stress. Our results shows that at low concentration (25 mg Cu kg −1 ) all the growth and biochemical parameters were increased but at elevated Cu concentrations, root length, shoot length, and biomass (fresh and dry) were all significantly decreased (p < 0.05). Chlorophyll contents also declined with increasing concentrations of Cu, when compared with control. A consistent increase of Cu accumulation in root and shoot of both S. indicum and C. tetragonoloba with rising concentrations of Cu in soil was noted for all tested treatments. In this study, both plant species showed quite high Cu tolerance and accumulation efficiency, even though C. tetragonoloba have higher Cu accumulation and tolerance indices than that of S. indicum. At 300 mg Cu kg −1 , the highest Cu concentration was found in the root (282.08 mg Cu kg −1 ) followed by leaf (105.78 mg Cu kg −1 ), stem (65.30 mg Cu kg −1 ), and pod (8.13 mg Cu kg −1 ) of S. indicum. In contrast, C. tetragonoloba had highest Cu concentration primarily in the root (158.45 mg Cu kg −1 ) followed by the stem (154.73 mg Cu kg −1 ), leaf (152.32 mg Cu kg −1 ), and pod (8.13 mg Cu kg −1 ). Considering rapid growth, high biomass, tolerance, accumulation efficiency, bioconcentration factor (BCF) > 1, bioaccumulation coefficient (BAC) > 1 and translocation factor (TF) > 1 established C. tetragonoloba as a potential candidate plant for the decontamination of slightly Cu-polluted soil where the growth of plants would not be impaired and the extraction of Cu could be maintained at satisfying levels. Therefore, the present study suggested that C. tetragonoloba could possibly be used as a viable tool for phytoextraction.