Recently the interest in the remediation of liquid effluents from industries such as paint manufacturing, leather tanning, etc. has increased, because the quality of the water used in these processes is highly compromised and is generally discarded without any process of purification, causing an inadequate use of water and contributing to the hydric stress of the planet. Therefore, it is necessary to find alternatives for the remediation of water used in industrial processes; one of the methods that has been widely accepted given its high efficiency, low cost, and versatility compared to others is the bioadsorption using materials derived from various processes used for the elimination of metals such as Cr, Co, Cu, Ni, etc. from liquid effluents. Among the materials used for this purpose are rice husk, orange, and wheat as well as apatite (hydroxyapatite and brushite), derived from animal bones, which have shown good capacity (>90%) to adsorb metals from aqueous solutions. Through the characterization by DRX, FTIR, and SEM, of the brushite and studies in equilibrium and kinetics of adsorption, it has been demonstrated that this material has a good capacity to remove metals present in water.