Ischemic cardiac preconditioning protects the heart during myocardial infarction by activating critical cardioprotective genes such as eNOS, SOD, and HO-1. Clinical trials only show marginal effects of conventional preconditioning strategies, however, in part due to transient activation of cardioprotective genes. Recent studies have shown that N6-methyladenosine (m6A) mRNA methylation is the most abundant RNA modification in eukaryotes, and governs mRNA stability and, in turn, the level of protein expression. We hypothesize that regulation of m6A mRNA methylation levels of cardioprotective mRNAs will result in stable expression of the cardioprotective proteins, rendering ischemic cardiac preconditioning more robust and reducing infarct size. To test this hypothesis, we will test the effects of introducing m6A methylases/ demethylases into ischemic preconditioned/post conditioned hearts and subjecting them to myocardial infarction. We will assess the half-life of key cardioprotective mRNAs (e.g., eNOS, SOD, and HO-1) and cardiac apoptosis to determine which m6A methylases/demethylases have a synergistic effect on cardiac preconditioning.