BackgroundHealth technologies are being developed to help people living at home manage long-term conditions. One such technology is “lifestyle monitoring” (LM), a telecare technology based on the idea that home activities may be monitored unobtrusively via sensors to give an indication of changes in health-state. However, questions remain about LM technology: how home activities change when participants experience differing health-states; and how sensors might capture clinically important changes to inform timely interventions.ObjectiveThe objective of this paper was to report the findings of a study aimed at identifying changes in activity indicative of important changes in health in people with long-term conditions, particularly changes indicative of exacerbation, by exploring the relationship between home activities and health among people with heart failure (HF). We aimed to add to the knowledge base informing the development of home monitoring technologies designed to detect health deterioration in order to facilitate early intervention and avoid hospital admissions.MethodsThis qualitative study utilized semistructured interviews to explore everyday activities undertaken during the three health-states of HF: normal days, bad days, and exacerbations. Potential recruits were identified by specialist nurses and attendees at an HF support group. The sample was purposively selected to include a range of experience of living with HF.ResultsThe sample comprised a total of 20 people with HF aged 50 years and above, and 11 spouses or partners of the individuals with HF. All resided in Northern England. Participant accounts revealed that home activities are in part shaped by the degree of intrusion from HF symptoms. During an exacerbation, participants undertook activities specifically to ease symptoms, and detailed activity changes were identified. Everyday activity was also influenced by a range of factors other than health.ConclusionsThe study highlights the importance of careful development of LM technology to identify changes in activities that occur during clinically important changes in health. These detailed activity changes need to be considered by developers of LM sensors, platforms, and algorithms intended to detect early signs of deterioration. Results suggest that for LM to move forward, sensor set-up should be personalized to individual circumstances and targeted at individual health conditions. LM needs to take account of the uncertainties that arise from placing technology within the home, in order to inform sensor set-up and data interpretation. This targeted approach is likely to yield more clinically meaningful data and address some of the ethical issues of remote monitoring.