Land-based sources of marine outfalls are a major source of marine pollution. The monitoring of land-based sources of marine outfalls is an important means for marine environmental protection and governance. Traditional on-site manual monitoring methods are inefficient, expensive, and constrained by geographic conditions. Satellite remote sensing spectral analysis methods can only identify pollutant plumes and are affected by discharge timing and cloud/fog interference. Therefore, we propose a smart monitoring method for land-based sources of marine outfalls based on an improved YOLOv8 model, using unmanned aerial vehicles (UAVs). This method can accurately identify and classify marine outfalls, offering high practical application value. Inspired by the sparse sampling method in compressed sensing, we incorporated a multi-scale dilated attention mechanism into the model and integrated dynamic snake convolutions into the C2f module. This approach enhanced the model’s detection capability for occluded and complex-feature targets while constraining the increase in computational load. Additionally, we proposed a new loss calculation method by combining Inner-IoU (Intersection over Union) and MPDIoU (IoU with Minimum Points Distance), which further improved the model’s regression speed and its ability to predict multi-scale targets. The final experimental results show that the improved model achieved an mAP50 (mean Average Precision at 50) of 87.0%, representing a 3.4% increase from the original model, effectively enabling the smart monitoring of land-based marine discharge outlets.