Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Hyperspectral remote sensing images offer a unique opportunity to quickly monitor water depth, but how to utilize the enriched spectral information and improve its spatial resolution remains a challenge. We proposed a water depth estimation framework to improve spatial resolution using deep learning and four inversion methods and verified the effectiveness of different super resolution and inversion methods in three waterbodies based on HJ-2 hyperspectral images. Results indicated that it was feasible to use HJ-2 hyperspectral images with a higher spatial resolution via super resolution methods to estimate water depth. Deep learning improves the spatial resolution of hyperspectral images from 48 m to 24 m and shows less information loss with peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and spectral angle mapper (SAM) values of approximately 37, 0.92, and 2.42, respectively. Among four inversion methods, the multilayer perceptron demonstrates superior performance for the water reservoir, achieving the mean absolute error (MAE) and the mean absolute percentage error (MAPE) of 1.292 m and 22.188%, respectively. For two rivers, the random forest model proves to be the best model, with an MAE of 0.750 m and an MAPE of 10.806%. The proposed method can be used for water depth estimation of different water bodies and can improve the spatial resolution of water depth mapping, providing refined technical support for water environment management and protection.
Hyperspectral remote sensing images offer a unique opportunity to quickly monitor water depth, but how to utilize the enriched spectral information and improve its spatial resolution remains a challenge. We proposed a water depth estimation framework to improve spatial resolution using deep learning and four inversion methods and verified the effectiveness of different super resolution and inversion methods in three waterbodies based on HJ-2 hyperspectral images. Results indicated that it was feasible to use HJ-2 hyperspectral images with a higher spatial resolution via super resolution methods to estimate water depth. Deep learning improves the spatial resolution of hyperspectral images from 48 m to 24 m and shows less information loss with peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and spectral angle mapper (SAM) values of approximately 37, 0.92, and 2.42, respectively. Among four inversion methods, the multilayer perceptron demonstrates superior performance for the water reservoir, achieving the mean absolute error (MAE) and the mean absolute percentage error (MAPE) of 1.292 m and 22.188%, respectively. For two rivers, the random forest model proves to be the best model, with an MAE of 0.750 m and an MAPE of 10.806%. The proposed method can be used for water depth estimation of different water bodies and can improve the spatial resolution of water depth mapping, providing refined technical support for water environment management and protection.
“Ice, Cloud, and Land Elevation Satellite-2” (ICESat-2) produces photon-point clouds that can be used to obtain nearshore bathymetric data through density-based filtering methods. However, most traditional methods simplified the variable spatial density distribution of a photon to a linear relationship with water depth, causing a limited extraction effect. To address this limitation, we propose a two-stage filtering method that considers spatial relationships. Stage one constructs the adaptive photon density threshold by mapping a nonlinear relationship between the water depth and photon density to obtain initial signal photons. Stage two adopts a seed-point expanding method to fill gaps in initial signal photons to obtain continuous signal photons that more fully reflect seabed topography. The proposed method is applied to ICESat-2 data from Oahu Island and compared with three other density-based filtering methods: AVEBM (Adaptive Variable Ellipse filtering Bathymetric Method), Bimodal Gaussian fitting, and Quadtree Isolation. Our method (F-measure, F = 0.803) outperforms other methods (F = 0.745, 0.598, and 0.454, respectively). The accuracy of bathymetric data gained from seabed photons filtered using our method can achieve 0.615 m (Mean Absolute Error) and 0.716 m (Root Mean Squared Error). We demonstrate the effectiveness of incorporating photon spatial relationships to enhance the filtering of seabed signal photons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.