2016
DOI: 10.3390/rs8100826
|View full text |Cite
|
Sign up to set email alerts
|

Remote Sensing from Ground to Space Platforms Associated with Terrain Attributes as a Hybrid Strategy on the Development of a Pedological Map

Abstract: There is a consensus about the necessity to achieve a quick soil spatial information with few human resources. Remote/proximal sensing and pedotransference are methods that can be integrated into this approach. On the other hand, there is still a lack of strategies indicating on how to put this in practice, especially in the tropics. Thus, the objective of this work was to suggest a strategy for the spatial prediction of soil classes by using soil spectroscopy from ground laboratory spectra to space images pla… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
6
0
3

Year Published

2017
2017
2019
2019

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 16 publications
(9 citation statements)
references
References 60 publications
0
6
0
3
Order By: Relevance
“…This was possible because the soil surface patterns are related to soil class-specific variations in the underlying horizons and throughout the soil profile. Thus, it is possible to relate surface spectral curves with soil classes, as demonstrated by Demattê et al (2007Demattê et al ( , 2009Demattê et al ( , 2016 and Nanni et al (2011Nanni et al ( , 2012. However, these relationships should be evaluated with caution, because in some cases, the soil surface information alone is insufficient for soil classification.…”
Section: Grouping Soil Profiles From Surface Reflectancementioning
confidence: 99%
“…This was possible because the soil surface patterns are related to soil class-specific variations in the underlying horizons and throughout the soil profile. Thus, it is possible to relate surface spectral curves with soil classes, as demonstrated by Demattê et al (2007Demattê et al ( , 2009Demattê et al ( , 2016 and Nanni et al (2011Nanni et al ( , 2012. However, these relationships should be evaluated with caution, because in some cases, the soil surface information alone is insufficient for soil classification.…”
Section: Grouping Soil Profiles From Surface Reflectancementioning
confidence: 99%
“…Up to then, studies had not used open source software, such as SAGA and R. In the following years, due to the development and free sharing of codes for soil modeling on open source platforms, several models run in R software became popular in research dealing with soil mapping. After 2011, Logistic regression continued to feature among the most used models for mapping soil classes in Brazil (Souza, 2013;Vasques et al, 2015;Chagas et al, 2017;Jeune et al, 2018), along with the following: ANNs (Arruda et al, 2016), maximum likelihood (Demattê et al, 2016), fuzzy logic and expert knowledge (Silva et al, 2014), and tree-based models (Bazaglia Filho et al, 2013;Höfig et al, 2014;Rizzo et al, 2016).…”
Section: Introductionmentioning
confidence: 99%
“…Nessas estratégias, estimam-se teores de atributos ou classes de solos em locais desconhecidos a partir amostras conhecidas que têm correlação com dados espectrais de satélite e/ou dados de relevo, via técnicas multivariadas, e assim obter mapas com classes ou atributos do solo. Observa-se que os trabalhos realizados nos estudos de predição se dividem entre estimativas de atributos (Moore et al, 1993;Odeh et al, 2006;Junior et al, 2008;Dematte et al, 2009;Mulder et al, 2011;Gerighausen et al, 2012;Genú et al, 2013;Franceschini et al, 2015) e estimativa de classes de solos (Demattê et al, 2004(Demattê et al, , 2016Ziadat, 2007;Figueiredo et al, 2008;ten Caten et al, 2013ten Caten et al, , 2009Genú e Demattê, 2012;Arruda et al, 2013;Giasson et al, 2013;Adhikari et al, 2014;Fiorio et al, 2014;Teske et al, 2015;Dias et al, 2015) via imagens de satélite e/ou dados de relevo. Além das estratégias de predição via imagens de satélite e/ou dados de relevo, também se apresenta como importante ferramenta, a biblioteca espectral.…”
Section: Introductionunclassified
“…Validação da predição da reflectância de subsuperfície a partir da reflectância imagem de satélite de superfície via métodos estatísticos multivariados Argila espacializada pelo método GWR a partir das bandas TM MSEKG; 3 Argila espacializada pelo método MRL a partir das bandas TM MSEKG; 4 Bandas TM MSEKGU; 5 Argila espacializada pelo método GWR a partir das bandas tm MSEKGU; 6 Argila espacializada pelo método MRL a partir das bandas TM MSEKGU; MRL: Regressão Linear Multipla; GWR: Regressão Geograficamente Ponderada; MSEKG: Mosaico de solo exposto Krigado; MSEKGU: Mosaico de solo exposto unido com o mosaico de solo exposto Krigado; R²: Coeficiente de determinação a 0.05 de significância; RMSE: Raiz Quadrada do Erro Médio Quadrático; RPIQ: Ratio of Performance/ Prediction to Interquartile.Os melhores resultados das variáveis independentes de origem do MSEKG em relação MSEKGU, podem ocorrer pelas transições de reflectâncias não suaves presentes no MSEKGU (Figura 6). Se observado em uma composição R:5, G:4 e B:3, as colorações em tons roxos mais escuros tem relação direta, por exemplo, com maiores teores de argila, enquanto na coloração em tons rosa mais claros pode indicar maiores teores de areia(Demattê et al, 2016). Assim, essas transições mais abruptas observadas no mosaico MSEKGU (Figura 6), podem ter influência negativa na qualidade das predições.…”
unclassified
See 1 more Smart Citation