2021
DOI: 10.1155/2021/9948811
|View full text |Cite
|
Sign up to set email alerts
|

Remote Sensing Image Compression Evaluation Method Based on Neural Network Prediction and Fusion Quality Fidelity

Abstract: Lossy compression can produce false information, such as blockiness, noise, ringing, ghosting, aliasing, and blurring. This paper provides a comprehensive model for optical remote sensing image characteristics based on the block standard deviation’s retention rate (BSV). We first propose a compression evaluation method, CR_CI, that combines neural network prediction and remote sensing image quality fidelity. Through the compression evaluation and improved experimental verification of multiple satellites (CBERS… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 10 publications
0
0
0
Order By: Relevance